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Abstract

Parameter estimation problems and heat source/flux reconstruction problems are some of the most frequently encountered inverse
heat transfer problems. These problems find their application in many areas of science and engineering. The primary focus of this paper
is on the heat transfer parameter estimation for a two-dimensional unsteady heat conduction problem with (a) convection boundary con-
dition and (b) convection and radiation boundary condition. The paper demonstrates the effect of a priori model on the performance of
the algorithm at different noise levels in the measured data. The inverse problem is solved using three different a priori models namely
normal, log normal and uniform. The posterior PDF is sampled using the Metropolis–Hastings sampling algorithm. Both single-param-
eter estimation and multi-parameter estimation problems are addressed and the effects of corresponding a priori models are studied. It
was found that the mean and maximum a posteriori estimates for thermal conductivity and the convection heat transfer coefficient were
insensitive to the a priori model at all the considered noise levels for the single-parameter estimation problem. At high noise levels in the
two-parameter estimation problem, the estimates for thermal conductivity and convection coefficient were sensitive to the a priori model.
It was also found that the standard deviation of the samples was correlated to the error in estimation in the single-parameter estimation
case. In three parameter estimation case, alternate solutions to the same problem were retrieved due to a strong correlation between the
convection coefficient and the emissivity. However, a more informative a priori model could address this issue.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Bayesian inference; A priori model; Parameter estimation; Inverse problems; Noise; Unsteady heat conduction
1. Introduction

Parameter estimation problems and heat source/flux
reconstruction problems are some of the most frequently
encountered inverse heat transfer problems. These prob-
lems find their application in many areas of science [1]
and engineering [2]. Generally parameter estimation prob-
lems are ill-posed by their very nature and lead to solutions
that may not unique and are sensitive to the input data.
Inverse problems often demand regularization like the
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one due to Tikhonov [3] to address the ill-posed nature
of the problem.

Estimation methods can broadly be classified as (a)
deterministic methods and (b) stochastic methods. Due to
the ill-posed nature of these problems, stochastic methods
fare better when compared to deterministic methods. Sto-
chastic methods are data driven and the data is collected
by solving many cases of the direct problem. In the jargon
of inverse problems, the direct problem is referred to as the
forward model. The quality of the data collected affects the
solution to the inverse problem and the task of data collec-
tion that involves repeated forward calculations makes the
solution computationally expensive.

Stochastic methods are becoming increasingly relevant
in the context of estimation or retrievals with ‘‘polluted”
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Nomenclature

A acceptance ratio
B breadth of the domain, m
Cp specific heat, J/kg K
E expectation
F forward problem
h convective heat transfer coefficient, W/m2 K
k thermal conductivity W/m K
L length of the domain, m
M number of samples
N normal distribution
n dimension of the measurement vector
P/p probability distribution function
q proposal distribution
SD standard deviation
t time s
U(a,b) uniform distribution between a and b

u random sample
x state vector (parameters)
x̂ estimate of x

Y measurement vector

Greek symbols

a gamma distribution parameter
b gamma distribution parameter

C boundary of the domain
d dirac delta function
e emissivity
m variance
p numerical value of p = 3.143 kg/m3

q density
r standard deviation of the instrument, K
X domain
x Gaussian noise

Superscripts

T transpose
i ith sample
� sample from proposal distribution

Subscripts

i ith sample
MAP maximum a posteriori
MEAN mean estimate
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data. There are many stochastic methods available to solve
parameter estimation problems. A review of these tech-
niques is presented in Alifanov [4] and Beck et al. [5].
Genetic Algorithms (GA), Artificial Neural Networks
(ANN) and Bayesian Inference are some of the commonly
used methods. Most of the stochastic methods including
Genetic Algorithms and ANN, model the problem as an
optimization problem wherein some sort of least square
minimization is done. Bayesian Inference, in philosophy,
is different from the above methods.

Bayesian inference is one of the emerging techniques in
solving the parameter estimation problems. It works on the
Bayes’ conditional probability concept. This method is
based on using probability to represent all forms of uncer-
tainty in the problem. Bayes’ equation is then applied to
relate the experimental data Y and the parameters x as
follows:

P ðxjY Þ ¼ P ðY jxÞ � P ðxÞ
PðY Þ ð1Þ

Here

P ðxjY Þ is the posterior probability density function
(PPDF),
P ðY jxÞ is the likelihood function,
P ðxÞ is the prior distribution function,
P ðY Þ is a normalizing constant.
A Bayesian approach to a problem starts with the for-
mulation of a model that best describes the situation of
interest, i.e. the forward problem or direct problem. The
next important step is to formulate a prior distribution
over the unknown parameter to capture the beliefs about
the situation before seeing the data. Lastly, Bayes’ rule is
applied to obtain the posterior distribution that relates
the observed data Y, the parameters x and the prior beliefs
of the parameters. From the posterior distribution, the
parameters of interest can be estimated in many ways
and the most commonly used estimates are (a) maximum
a posteriori (MAP) and (b) the mean estimate

x̂MAP ¼ arg max
x
ðP ðxjY ÞÞ ð2Þ

and

x̂MEAN ¼ EðP ðxjY ÞÞ ð3Þ

This theoretically simple process comes with two big chal-
lenges, (a) the prior specification and (b) computation. The
computational complexity of the problem can be tackled in
part by the Markov Chain Monte Carlo (MCMC) tech-
niques but many are still uncomfortable in use of this meth-
od, often because they view the selection of prior as being
arbitrary and subjective [6]. The difficulty that is discussed
above is outside of the difficulty associated with solving the
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forward problem, that could in principle be from any
branch of science and engineering.

This work applies the Bayesian paradigm for solving an
inverse heat transfer problem to investigate the effect of a
priori selection on the performance of the algorithm when
applied to heat transfer problems, at different noise levels
in the measured data (Y).
2. Bayesian inference and inverse heat transfer problems

Bayesian inference is one of the relatively new methods
employed in solving inverse heat transfer problems and the
applicability of the method to inverse heat transfer prob-
lems can be attributed to developments in computational
techniques such as Markov Chain Monte Carlo (MCMC)
and their related sampling algorithms. Modeling is one of
the important steps in Bayesian inference. The modeling
step starts with modeling the current situation (Likelihood
function) and is followed by the a priori modeling.
2.1. Modeling the heat transfer problem

Data collection is the foremost step in Bayesian infer-
ence. The modeling step starts with the modeling of the
data collected and the conditions in which it was collected.
In most of the inverse heat transfer problems, the data col-
lected is in the form of temperature. Modeling the temper-
ature data is relatively an easy task, as the uncertainty in
the measurement of temperature, i.e. noise, can be easily
modeled as a Gaussian distribution. Consider Y to be a
vector of measured temperatures at different spatial posi-
tions and at different times. The measured temperatures
yi are nothing but the calculated temperatures plus a
Gaussian random noise x, i.e.

Y ¼ F ðxÞ þ x ð4Þ

F ðxÞ is the solution to the forward problem with the given
state of parameters x. Since F ðxÞ is not directly invertible,
estimation of x given the set of temperatures Y is not an
easy task. The very nature of the problem is ill-posed. As
one could observe from Eq. (4), ðY � F ðxÞÞ has the same
distribution of x � x is a random sample from Nð0; rÞ,
where r is the standard deviation of the measuring instru-
ment and N is normal distribution function.

Hence

P ðY jxÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
� �n exp �ðY � F ðxÞÞTðY � F ðxÞÞ

2r2

 !
ð5Þ

where n is the dimension of the vector Y. In the above
equation, the term in the numerator of the exponential
function is the sum of the squares of the differences be-
tween the measured temperatures and the calculated tem-
peratures. It is easy to infer from the above expression
that least square minimization is in-built in Bayesian
inference.
2.2. Modeling the a priori

In a priori modeling the attempt is to capture the prior
knowledge of the parameters. Prior information could be
in the form of bounds for parameters, distribution and so
on. In a few cases, the distribution of the parameter is
known and the interest in the problem might be the precise
estimation of the parameter. In such cases the a priori
model is the known distribution and in the parlance of
Bayesian statistics is known as an informative prior. How-
ever, in many problems this information is not available.

Inverse heat transfer problems mainly fall into two main
categories: (a) Parameter estimation as for example, esti-
mation of thermal conductivity of a material, emissivity
of a surface and so on. (b) Heat source/flux estimation.
In heat flux estimation problems, the heat flux is discretized
both spatially and temporally and this forms a field. The
heat source is approximated as a linear combination of
weights at these nodes (both spatial and temporal) and
the basis functions which are similar to shape functions
in finite element analysis. This field is modeled using the
concepts of Markov Random Field (MRF) and the weights
are estimated. For a further insight, one may refer to the
article by Wang and Zabaras [7]. In most cases of the
parameter estimation problem, prior information is not
readily available. In order to handle these problems, non-
informative priors are employed. By employing these pri-
ors, new parameters related to the prior distribution come
into the picture. These are termed hyper parameters. For
example, if a Gaussian distribution with unknown mean
and variance is employed, the mean and the variance of
the distribution become the hyper parameters which also
form a part of the retrieval using Bayesian inference.

2.3. Sampling

In most of the cases, the PPDF is of a non-standard
form, is non-linear or has an implicit likelihood [7]. Due
to the above reasons, numerical sampling becomes neces-
sary. Markov Chain Monte Carlo (MCMC) is one of the
most powerful and popular sampling techniques. A good
review of the available sampling techniques is presented
in [8,9]. The idea here is to draw M identical independently
distributed (i.i.d) samples fxig i ¼ 1; . . . ; M and approxi-
mate the PPDF from these samples as follows:

P ðxjY Þ ¼ 1

M

XM

i¼1

dðx� xiÞ ð6Þ

In order to draw these samples from a rather complex
PPDF, various sampling algorithms are employed.
Metropolis–Hastings (MH) sampling algorithm and Gibbs
sampling algorithm are the widely used algorithms to solve
the parameter estimation problem and the heat source/flux
estimation problem respectively. Hybrid Monte Carlo sam-
pler [10], a relatively less popular sampler, is also gaining
momentum in the field of parameter estimation.
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2.3.1. Metropolis–Hastings sampling algorithm

Both Metropolis–Hastings and Gibbs sampling algo-
rithms are discussed in several references (see for example
[9,11]). The algorithm can be summarized as follows: For
a one-dimensional x, the algorithm is as follows:

1. Initialize x1

2. for i ¼ 1; . . . ; M
a. Draw a sample u � Uð0; 1Þ i.e. from a uniform distri-

bution between 0, 1.
b. Draw a sample x� � qðx�jxiÞ
c. If u < Aðx�; xiÞxiþ1 ¼ x�

d. else xiþ1 ¼ xi
Start

Collect data i.e. measurement vector Y

Initialize x0 with a guess value 

If iteration count 
(i)

<= number of 
MCMC samples

(M)

Generate a uniform random number u 
Work out the 
statistics i.e 
Histogram,

Y

In the above algorithm, q is called the proposal distribu-
tion (easy-to-sample) and A is defined as follows:

Aðx�; xiÞ ¼ min 1;
pðx�Þ � qðxijx�Þ
pðxiÞ � qðx�jxiÞ

� �
ð7Þ

A is called acceptance. M is the number of samples. One
must make a note that in Eq. (7), p(x) refers to the function
to be explored i.e. target function and not the prior. In the
cases considered, the target function is the PPDF. The
above algorithm converges to the target function for any
reasonable proposal distribution though the speed of con-
vergence itself varies. The most commonly used proposal
distribution is qðx�jxiÞ � Nðxi; rÞ where r is 5% of xi. One
must also observe that the method is computationally
expensive as in every iteration, the forward sample is solved
to determine the next sample.

In case of problems where the parameter vector is multi-
dimensional, a certain variant of the above scheme is used
and is as follows

1. Initialize x1 ¼ fx1
1; x

1
2; . . . ; x1

ng
2. for i ¼ 1; . . . ;M

a. for j ¼ 1; . . . ; n
i. Draw a sample u � Uð0; 1Þ

ii. Draw a sample x� � qðx�jxiþ1
�j ; x

i
jÞ

iii. If u < Aðx�; xi
jÞ then xiþ1

j ¼ x�

iv. Else xiþ1
j ¼ xi

j

Generate a random number x* 
from a normal population 

with mean xi

Solve the forward problem 
with x* and xi and calculate 

acceptance ratio A

If
u<Axi+1=xi

xi+1=x*

Mean, MAP etc 
using the 
generated

samples xi after 
excluding the 

burn in. 

Stop

Y

Fig. 1. Flow chart of single-parameter estimation problem using Bayesian
inference and MH sampling scheme.
where n is the dimension of the parameter vector and

xiþ1
�j ¼ fxiþ1

1 ; xiþ1
2 ; . . . ; xiþ1

j�1; x
i
jþ1; . . . ; xi

ng
T

and

Aðx�; xi
jÞ ¼ min 1;

pðx�jxiþ1
�j Þ � qðxi

jjx�j ; xiþ1
�j Þ

pðxi
jjxiþ1
�j Þ � qðx�jxi

j; x
iþ1
�j Þ

 !
ð8Þ

and qðx�jxi
j; x

iþ1
�j Þ � Nðxi

j; r
2
xj
Þ,r2

xj
is 5% of the proposal mean

xi
j.

2.3.2. Gibbs sampling algorithm

This algorithm is used when the dimension of the
parameter vector is high. This is mainly used in heat
source/flux estimation problems. Wang and Zabaras [7]
demonstrate its application in a heat transfer problem.
The algorithm can be summarized as follows:

1. Initialize x1 ¼ fx1
1; x

1
2; . . . ; x1

ng
2. For i ¼ 1; . . . ;M

a. xiþ1
1 � pðx1jxi

2; x
i
3; . . . ; xi

nÞ
b. xiþ1

2 � pðx2jxiþ1
1 ; xi

3; . . . ; xi
nÞ.
..
n. xiþ1
n � pðxnjxiþ1

1 ; xiþ1
2 ; xiþ1

3 ; . . . ; xiþ1
n�1Þ
In this algorithm the acceptance is always 1. This is an
important feature, as this leads to quick convergence.

2.4. Bayesian inference using Metropolis–Hastings sampler

Bayesian inference and MCMC sampling supplement
each other and the combination results in a powerful tool.
The algorithm for a single parameter estimation (say x)
problem using Bayesian inference and MH sampler is pre-
sented in the flow chart (Fig. 1).
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3. Parameter estimation

In the current study, a typical two-dimensional transient
heat conduction problem (Fig. 2) is chosen and the perfor-
mance of the algorithm is studied under different condi-
tions. The left wall of the two-dimensional slab is hot
and isothermal at T w. The other three surfaces are bathed
by a fluid at T1 that gives rise to convective heat transfer
out of the domain. The governing equations of the forward
problem are

qCp
oT
ot
¼ rðk � rT Þ ð9Þ

T ðx; y; 0Þ ¼ T I ð10Þ

� k � oT
oy
¼ h � ðT � T1Þ 8ðx; yÞ 2 ðC1 [ C3Þ ð11Þ

� k � oT
ox
¼ h � ðT � T1Þ 8ðx; yÞ 2 C2 ð12Þ

T ðx; y; tÞ ¼ T w 8ðx; yÞ 2 C4 ð13Þ
T I ¼ 573 K

T w ¼ 573 K

T1 ¼ 298 K

The outline of the current study is as follows:

1. Single parameter estimation problem
a. Thermal conductivity (k) ,
b. Convective heat transfer coefficient (h).
2. Two-parameter estimation problem – (k, h),
3. Three-parameter estimation problem – ðk; h; eÞ, where e

is the emissivity.
3.1. Single parameter estimation in 2D transient heat

conduction

Single parameter estimation is carried out for two differ-
ent sub-cases.
Fig. 2. Problem geometry, Cases 3.1 and 3.2.
3.1.1. Estimation of thermal conductivity in 2D transient

heat conduction

Thermal conductivity estimation is an important inverse
heat transfer problem and is often encountered in material
recognition experiments. These problems are becoming
more common with the advancements in material science.
In this study, the material properties chosen are similar
to that of steel and the thermal conductivity of the same
is retrieved using Bayesian inference. In this case, a value
of h = 10 W/m2 K, k = 25 W/m K was used to construct
the data vector Y and the value of k was estimated using
Bayesian inference. The problem specifications are as
follows:

Length, L 0.1 m;
Breadth, B 0.1 m;
Observation time 50 s;
Thermal conductivity, k to be estimated;
Convection coefficient, h 10 W/m2 K;
Density 7850 kg/m3;
Specific heat 460 J/kg K.

Grid independence studies (Fig. 3) were carried out to
arrive at the right grid size. A 31 � 31 grid was found to
be the optimum. The time discretization was 0.1 s. An
explicit finite difference scheme was used to solve the for-
ward problem. Temperature data was collected with
k = 25 W/m K at points shown in Fig. 2 and at times
t = 10, 20, 30, 40, 50 s (the dimension of the Y matrix is
45) and this value of k was retrieved. The data collected
(Y) was corrupted with Gaussian noise of r ¼ f0:0 K;
0:1 K;0:5 K;1:0 Kg and at each noise level, the inverse
problem was solved using three different a priori distribu-
tions, namely normal, log normal and uniform. Normal
and uniform priors are commonly used in Bayesian infer-
ence while the rationale behind the use of a log normal
prior is to investigate the effect of such a non-obvious
choice on the performance of the algorithm. The PPDFs
Fig. 3. Grid independence check.



Table 1
Thermal conductivity estimates for different priors at various noise levels

A priori Mean estimate
(W/m K)

MAP estimate
(W/m K)

SD
(W/m K)

Noise level 0.0 K

Normal 25.08 25.28 0.42
Log normal 25.00 24.98 0.44
Uniform 25.01 25.03 0.44

Noise level 0.1 K

Normal 24.59 24.58 0.42
Log normal 24.58 24.54 0.43
Uniform 24.58 24.52 0.43

Noise level 0.5 K

Normal 22.49 22.29 2.02
Log normal 22.01 21.39 1.80
Uniform 22.24 22.16 1.83

Noise level 1.0 K

Normal 20.62 20.39 2.92
Log normal 20.74 19.19 3.46
Uniform 20.80 19.74 3.37

Table 2
Convection coefficient estimates for different priors at various noise levels

A priori Mean estimate
(W/m2 K)

MAP estimate
(W/m2 K)

SD
(W/m2 K)

Noise level 0.0 K

Normal 10.00 10.00 0.08
Log normal 10.00 9.99 0.08
Uniform 10.00 10.00 0.08

Noise level 0.1 K

Normal 10.09 10.07 0.08
Log normal 10.09 10.08 0.07
Uniform 10.09 10.07 0.08

Noise level 0.5 K

Normal 10.31 10.29 0.38
Log normal 10.32 10.21 0.38
Uniform 10.32 10.35 0.37

Noise level 1.0 K

Normal 11.52 11.93 0.71
Log normal 11.48 11.44 0.76
Uniform 11.51 11.49 0.76
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for each of the above priors are constructed following the
hierarchical Bayesian models suggested in [11] and are
listed below.

a. Normal

P ðk; lk; tkjY Þ / exp �ðY � F ðkÞÞTðY � F ðkÞÞ
2r2

 !

� t�0:5
k exp �ðk � lkÞ

2

2tk

 !
� t�ð1þaÞ

k

� expð�b � t�1
k Þ ð14Þ

b. Log normal

P ðk; llk; tlkjY Þ / exp �ðY � F ðkÞÞTðY � F ðkÞÞ
2r2

 !

� t�0:5
lk exp �ðlogðkÞ � llkÞ

2

2tlk

 !

� t�ð1þaÞ
lk � expð�b � t�1

lk Þ ð15Þ

c. Uniform

P ðkjY Þ / exp �ðY � F ðkÞÞTðY � F ðkÞÞ
2r2

 !
ð16Þ

for 0 < k < kmax;where kmax can be an arbitrarily large
value.

Here lk; tk; llk; tlk are hyper parameters. The values of a
and b chosen are a ¼ b ¼ 0:001 following [11].

Eqs. (14) and (15) are basically of the form
P ðY jkÞ � ðP ðkjl; mÞ � P ðmÞÞ where the first term is the like-
lihood function and the second (in bracket) is the prior dis-
tribution. The distributions for P ðkjl; mÞ is the prior
distribution of k given the hyper parameters, i.e. l; m, while
P ðmÞ is the distribution for the variance. The prior distribu-
tions are conjugate. In the case of uniform distribution
since the distribution is a constant, no prior terms feature
in Eq. (16). The constant is taken care of by the
proportionality.

The results from this study are presented in Tables 1 and
3 and Fig. 4. The spread of the samples increased as noise
in measurement increased. Point estimates (i.e. statistics) of
the posterior probability distribution function did not
depend on the a priori model at all considered noise levels.

It is evident that for noise levels around 0.5 K which
translates to a measurement error of 1.5 K i.e. �3r, there
is a 10% error in value of k estimated both by the mean
and the MAP. Hence, when working with non-informative
priors i.e. minimal prior information, it is imperative that
the instrument error is reduced to the extent possible in-
order to improve the accuracy of the estimate. While this
may seem pretty obvious, it is heartening to note that for
noise levels up to 0.3 K or a measurement error of 1 K,
the retrieval is remarkably accurate regardless of the a pri-
ori used. The relatively weak dependence of the estimates
on the priors also subdues substantially the general criti-
cism associated with retrievals using hierarchical Bayesian
models. Ghosh and Samanta [12,13] present an excellent
discussion on this topic.
3.1.2. Estimation of convection heat transfer coefficient in 2D

transient heat conduction

Even in this case, the properties of the material proper-
ties used were similar to that of steel. In this case, value of k

was fixed and the convection coefficient was retrieved. A
value of h = 10 W/m2 K, k = 25 W/m K was used to
construct data vector Y and the value of the convection



Table 3
Posterior probability density functions in the thermal conductivity estimation case (Case 3.1.1)
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Table 4
Posterior probability density functions in convection coefficient estimation case (Case 3.1.2)
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Fig. 4. Effect of a priori scheme on mean thermal conductivity estimate in
Case 3.1.1. Scheme 1 – normal, Scheme 2 – log normal, Scheme 3 –
uniform.

Fig. 5. Effect of a priori scheme on mean convection coefficient estimate,
Case 3.1.2. Scheme 1 – normal, Scheme 2 – log normal, Scheme 3 –
uniform.

Fig. 6. Relation between SD and error, R2 ¼ 0:98 (Case 3.1.1).

Fig. 7. Relation between SD and error, R2 ¼ 0:99 (Case 3.1.2).
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coefficient was estimated using Bayesian inference keeping
k at 25 W/m K. The problem specifications are as follows:

Length, L 0.1 m;
Breadth, B 0.1 m;
Observation time 50 s;
Thermal conductivity, k 25 W/m K;
Convection coefficient, h to be estimated;
Density 7850 kg/m3;
Specific heat 460 J/kg K.

As in the previous case, a 31 � 31 uniform mesh was
used and the time discretization was 0.1 s. An explicit finite
difference scheme was used to solve the problem and tem-
perature data was collected with h = 10 W/m2 K. The data
collected was corrupted with noise (Gaussian i.i.d) values
r ¼ f0:0 K;0:1 K;0:5 K;1:0 Kg and at each noise level the
inverse problem was solved by Bayesian inference using
three different a priori distributions namely normal, log
normal and uniform. The PPDFs are similar to that in
the previous case with k replaced by h.

The results from this study are presented in Tables 2 and
4 and Fig. 5. The estimates for the convection coefficient
are more accurate when compared to thermal conductivity.
Even at a noise level of 1 K, i.e. measurement error of 3 K
the error in the estimate, both by the MAP and the mean
scheme, is around 10%. This is possibly due to the more
constrained nature of problem by the convention coeffi-
cient; the performance of the algorithm was independent
of the a priori model. The discussion pertaining to the ther-
mal conductivity estimation case, in respect of the retri-
evals, holds for this case as well.

Another interesting trend was observed between the SD/
MEAN ratio of the samples and the accuracy of estimation
in the thermal conductivity estimation and convective heat
transfer coefficient estimation case. A second degree curve
was fitted in both cases with an R2 value of 0.98 (Fig. 6) and



Table 5
Thermal conductivity estimates and convection coefficient estimates in the two-parameter estimation problem for various prior models at different noise
levels (Case 3.2)

A priori of k A priori of h Estimates of k (W/m K) Estimates of h (W/m2 K)

Mean MAP SD Mean MAP SD

Noise level 0.0 K

Normal Normal 25.01 24.56 1.20 10.00 10.00 0.21
Normal Log normal 24.99 25.04 1.20 9.99 10.03 0.21
Normal Uniform 25.19 25.02 1.18 10.03 10.00 0.21
Log normal Normal 25.09 25.04 1.24 10.01 10.04 0.22
Log normal Log normal 25.06 24.83 1.21 10.01 10.02 0.21
Log normal Uniform 25.22 25.71 1.24 10.03 9.96 0.21
Uniform Normal 25.08 24.72 1.27 10.01 9.90 0.22
Uniform Log normal 25.08 24.54 1.21 10.01 9.93 0.21
Uniform Uniform 25.02 24.78 1.20 10.00 10.08 0.21

Noise level 0.1 K

Normal Normal 25.15 25.98 0.96 9.98 10.10 0.17
Normal Log normal 25.68 25.93 1.26 10.07 10.09 0.21
Normal Uniform 25.48 25.13 1.24 10.03 10.02 0.21
Log normal Normal 25.42 25.83 1.28 10.02 10.09 0.22
Log normal Log normal 25.54 25.23 1.27 10.04 10.15 0.22
Log normal Uniform 25.57 25.11 1.25 10.05 10.02 0.21
Uniform Normal 25.81 25.89 1.25 10.09 10.14 0.21
Uniform Log normal 25.70 25.84 1.24 10.07 10.09 0.21
Uniform Uniform 25.75 25.36 1.25 10.08 10.05 0.21

Noise level 0.5 K

Normal Normal 24.63 23.06 5.36 9.76 9.54 0.92
Normal Log normal 20.61 19.65 2.33 9.11 8.78 0.54
Normal Uniform 26.21 23.29 6.55 9.98 9.66 1.05
Log normal Normal 26.70 27.55 5.69 10.13 10.02 0.91
Log normal Log normal 24.45 21.49 5.60 9.72 9.59 0.96
Log normal Uniform 25.07 22.81 6.00 9.82 9.96 1.01
Uniform Normal 25.54 23.78 6.39 9.87 9.78 1.05
Uniform Log normal 25.76 25.08 6.13 9.92 9.79 1.02
Uniform Uniform 26.60 24.72 6.12 10.07 9.67 1.01

Noise level 1.0 K

Normal Normal 31.13 45.37 11.05 10.58 10.25 1.76
Normal Log normal 42.84 40.52 16.97 11.89 11.99 2.06
Normal Uniform 33.02 26.97 11.75 10.84 10.05 1.74
Log normal Normal 36.36 21.74 18.33 11.19 10.43 2.37
Log normal Log normal 27.21 20.19 13.38 9.84 9.62 2.11
Log normal Uniform 30.00 13.35 16.53 10.22 10.38 2.30
Uniform Normal 35.19 26.21 13.77 11.08 9.88 1.65
Uniform Log normal 34.61 22.07 16.38 10.85 9.48 2.11
Uniform Uniform 33.17 24.00 14.05 10.79 9.85 1.80
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0.99 (Fig. 7), respectively. The standard deviation of the
sample indicates the spread of the sample and hence in a
way it confirms the accuracy of the estimate.

3.2. Two-parameter estimation problem in 2D transient heat

conduction

In this problem, the data vector Y is constructed by solv-
ing the forward problem with k = 25 W/m K and
h = 10 W/m2 K and corrupting them with Gaussian i.i.d
noise. The noise levels chosen are same as in the previous
case, r ¼ f0:0 K;0:1 K;0:5 K;1:0 Kg. The problem is solved
using three different priors (normal, log normal and uni-
form) for k and h, respectively. In other words, nine differ-
ent combinations of prior selection at each noise level. The
specifications of the problem are as follows:
Length, L 0.1 m;
Breadth, B 0.1 m;
Observation time 50 s;
Thermal conductivity, k to be estimated;
Convection coefficient, h to be estimated;
Density 7850 kg/m3;
Specific heat 460 J/kg K.

The PPDF is of the form

Pðk; lk; tk; h; lh; thjY Þ

/ exp �ðY � F ðk; hÞÞTðY � F ðk; hÞÞ
2r2

 !

� f1ðk; lk; tkÞ � f2ðh; lh; thÞ ð17Þ



Table 6
Marginal PPDFs for thermal conductivity P(k|Y) at noise level: 0.0 K, Case 3.2
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where f1 and f 2 assume different forms depending on the
prior selection and are presented in Table 14. The grid
and the scheme used for data collection are same as in
the previous case.
The results of the study are presented in Tables 5–13.
While at low noise levels of 0.1 K the estimates were
pretty accurate, as the noise levels increased, the estimates
became increasingly inaccurate, as expected intuitively.



Table 7
Marginal PPDFs for thermal conductivity P(k|Y) at noise level: 0.1 K, Case 3.2
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A priori had little effect on point estimates at low noise
levels. At noise level 0.5 K and 1.0 K, the estimates for
thermal conductivity and convection coefficient were sensi-
tive to the a priori model. The trends observed in this case
are plotted in Figs. 8 and 9. The low accuracy of the algo-
rithm can be attributed to two reasons (a) increased noise



Table 8
Marginal PPDFs for thermal conductivity P(k|Y) at noise level: 0.5 K, Case 3.2
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level and (b) correlation between thermal conductivity and
convection coefficient. A higher k increases rate of heat
transfer in the domain. In-order to maintain the same
temperatures (i.e. Y) the convective heat transfer must



Table 9
Marginal PPDFs for thermal conductivity P(k|Y) at noise level: 1.0 K, Case 3.2
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increase to increase heat transfer out of the domain.
Hence a higher k estimate leads to a higher h estimate
or vice-versa. This trend can also be observed from Figs.
8 and 9.
3.3. Three-parameter estimation in 2D transient conduction

In this case, a heat transfer to the outside by radiation is
introduced apart from the convection. Furthermore, the



Table 10
Marginal PPDFs for convection coefficient P(hjY) at noise level : 0.0 K, Case 3.2
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aspect ratio is changed to 10:1 so as to simulate heat trans-
fer in a fin. Array of such fins are widely used in cooling of
electric motors, electronics and so on. This is less restrictive
than the case considered in Section 3.2, as radiation is



Table 11
Marginal PPDFs for convection coefficient, P(hjY) at noise level : 0.1 K, Case 3.2
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inevitably present in such applications. The geometry is
presented in Fig. 10 and the governing equation and
boundary conditions are listed below:
qCp
oT
ot
¼ rðk � rT Þ ð18Þ

T ðx; y; 0Þ ¼ T I ð19Þ



Table 12
Marginal PPDFs for convection coefficient, P(hjY) at noise level : 0.5 K, Case 3.2
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� k � oT
oy
¼ h � ðT � T1Þ

þ rs � e � ðT 4 � T 4
1Þ 8ðx; yÞ 2 ðC1UC3Þ ð20Þ
� k � oT
ox
¼ h � ðT � T1Þ þ rs � e � ðT 4 � T 4

1Þ 8ðx; yÞ 2 C2 ð21Þ
T ðx; y; tÞ ¼ T w 8ðx; yÞ 2 C4 ð22Þ



Table 13
Marginal PPDFs for convection coefficient, P(hjY) at noise level : 1.0 K, Case 3.2
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T I ¼ 573 K

T w ¼ 573 K

T1 ¼ 298 K
The data vector Y is constructed by solving the forward
problem with k = 25 W/m K, h = 10 W/m2 K and e ¼ 0:8
in one sub-case and with k = 25 W/m K, h = 10 W/m2 K
and e ¼ 0:83 in another sub-case. The data is corrupted



Fig. 8. Effect of a priori scheme on mean thermal conductivity estimate in
Case 3.2. Schemes – (K,H): 1 – (N,N), 2 – (N,LN), 3 – (N,U), 4 – (LN,N),
5 – (LN,LN), 6 – (LN,U), 7 – (U,N), 8 – (U,LN), 9 – (U,U).

Fig. 9. Effect of a priori scheme on mean convection coefficient estimate in
Case 3.2. Schemes – (K,H): 1 – (N,N), 2 – (N,LN), 3 – (N,U), 4 – (LN,N),
5 – (LN,LN), 6 – (LN,U), 7 – (U,N), 8 – (U,LN), 9 – (U,U).

Table 14
Prior distributions in two-parameter estimation problem

Prior f1 f2

Normal t�0:5
k exp � ðk�lk Þ2

2tk

� �
� t�ð1þaÞ

k � expð�b � t�1
k Þ t�0:5

h exp � ðh�lhÞ2
2th

� �
� t�ð1þaÞ

k � expð�b � t�1
h Þ

Log normal t�0:5
lk exp � ðlogðkÞ�llkÞ2

2tlk

� �
� t�ð1þaÞ

lk : expð�b � t�1
lk Þ t�0:5

lh exp � ðlogðkÞ�llhÞ2
2tlh

� �
� t�ð1þaÞ

lh : exp �b � t�1
lh

� �
Uniform Constant Constant

Note: The above functions are defined for 0 < k < kmax and 0 < h < hmax where kmax; hmax can be arbitrarily large values and lh; th;llh; tlh, llk ; tlk are
hyper parameters and these values are also retrieved in Bayesian inference.
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with Gaussian i.i.d noise with r ¼ 0:1 K in the latter sub-
case.

A commercial FEM solver was used to solve the for-
ward problem. An 11 � 21 grid and full order scheme
was used. The time discretization was 1 s and this scheme
was arrived at after the grid independence checks
(Fig. 11). The measurement vector Y was constructed by
the temperatures at (0.3,0.001), (0.6,0.001), (0.9,0.001),
(0.9,0.004), (0.5,0.003) and (0.7,0.003) at time t =
1,2,3, . . . , 10 s. The dimension of Y vector is 60.

Coming to the inverse problem, the problem is a case of
alternate solution [14]. The convection heat transfer coeffi-
cient and the emissivity of the surface are highly correlated.
A fall in heat transfer by one mode can be compensated by
increase in the heat transfer by the other mode. The motive
for working on this case is to investigate if the algorithm
showed any indications of alternate solution. Stated explic-
itly, there is a possibility of the algorithm converging to low
emissivity and unusually high convection coefficient. Even
though ‘‘domain knowledge” can be used to disregard this
solution, from a Bayesian perspective we need to investi-
gate whether constraining the prior leads to the true
solution.

Since the noise level is low, i.e. 0.1 K, uniform priors are
used for conductivity and convection coefficient. In the first
case, an unconstrained uniform a priori between 0 and 1,
i.e. U(0,1), is used for emissivity and a preliminary estimate
is obtained from 1000 samples after convergence of the
Markov chain. The mean estimates obtained for k; h; e were
24.43 W/m K, 25.98 W/m2 K, and 0.02, respectively.
Fig. 12 is a good test for the retrieval, wherein a parity plot
of the measured temperatures and calculated temperatures
with estimated values of the parameters using forward
model is given. This plot confirms the validity of the solu-
tion. The R2 value for the line was 1.0.

From a heat transfer perspective, it is clear that the h
value of 25 W/m2 K for natural convection of air is highly
unlikely. Therefore this solution can be considered ‘‘infea-
sible” not from the point of view of the Bayesian statistics,
but from the physics of the problem.

Further constraining the problem, a U(0.5,1) i.e. uni-
form prior between 0.5 and 1.0 was used. Using 1000 sam-
ples after convergence the estimates were 26.08 W/m K,
15.53 W/m2 K, 0.527. Fig. 13 validates the above solution.
The R2 value for the line is 1.00 too. In the above two sub
cases the measurement vector was not corrupted by noise
but the r value used was 0.1 K.

In the final case, a normal a priori with mean 0.8 and SD
5% of mean was used. The data vector was constructed
using e = 0.83. In this case, the values estimated using
10000 converged samples were 27.15 W/m K, 10.39 W/
m2 K, 0.815. Fig. 14 validates the solution.



Fig. 10. Problem geometry, Case 3.3. L = 0.1 m, B = 0.01 m, observation time = 10 s.

Fig. 11. Grid independence check – (Richardson’s Extrapolation).

Fig. 12. Parity plot of Y (24.43, 25.98, 0.02) vs. Y(25,10,0.8), Case 3.3,
R2 ¼ 1.

Fig. 13. Parity plot of Y (26.08, 15.53, 0528) vs. Y (25, 10, 0.8), Case 3.3,
R2 ¼ 1.

Fig. 14. Parity plot of Y (27.15, 10.39, 0.815) vs. Y (25, 10, 0.83),
R2 ¼ 0:97.
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In all the above three cases, the results did not show any
aberration so as to indicate an alternate optimum. It is also
important to note that better priors, in terms of informa-
tion, gave better estimates. The posterior probability den-
sity functions and the statistics of the estimates in the
final case are presented in Figs. 15–17.



Fig. 15. Marginal posterior probability density function of thermal
conductivity – P(k|Y).

Fig. 16. Marginal posterior probability density function of convection
coefficient – P(h|Y).

Fig. 17. Marginal posterior probability density function of emissivity –
P ðejY Þ.
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4. Conclusions

For a two-dimensional, unsteady inverse heat conduc-
tion problem, the sensitivity of the solution on the a priori
model has been studied in this work at different levels of
noise in measured data for both single-parameter and
two-parameter estimation problems, when hierarchical
Bayesian prior models are applied.

Estimates were found insensitive to the a priori model at
all the considered noise levels in the single-parameter esti-
mation problem. However, in the two-parameter estima-
tion problem at noise levels of 0.5 K and 1.0 K, due to
the increased ill-posed nature of the problem when com-
pared to a single-parameter problem, the a priori model
had a significant effect on the estimates. At 1 K noise level,
mean estimates for k varied between 27 W/m K and 43 W/
m K and mean estimates of h varied between 9.75 W/m2 K
and 12 W/m2 K for different combinations of a priori
models.

Bayesian inference tends to point to alternate solutions
when highly correlated parameters are retrieved using
non-informative prior models. This was demonstrated in
the three parameter estimation problem. An improvement
in the sampling technique or better priori knowledge of
the concerned parameters, i.e. a priori, may address this
issue.

Bayesian inference could be used as a powerful tool to
design experiments by exploiting the dependence of vari-
ance and the accuracy. It is desired to have minimal vari-
ance for the estimated samples and this could be achieved
by appropriate selection of the measurement points which
were considered frozen in this study. The selection of these
points for achieving minimum variance is currently under
progress.
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